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Abstraet-A solution is presented for the propagation of temperature and moisture changes through 
a mass of fibres when the condition of the air flowing through the mass is changed. The theory takes 
into account the finite rate of uptake or loss of moisture by the fibres; in previous treatments this 
rate has been assumed as infinitely fast. Calculations based on the present theory and assuming 
rates of air flow typical of industrial practice indicate that the moisture profile within the mass will be 
greatly extended in comparison with predictions from earlier theories. Experimentally determined 

profiles for desorption of fibres are in good agreement with the present theory. 

NOTATION 

A(C), function G; 

0, air velocity; 
x, distance co-ordinate; 
PY mass per unit volume of dry air- 

concentration of water-vapour in air; 
valueofCatx= co; 
valueatCatx=-co; 
value of C when I = lmax ; 
specific heat of air at constant pres- 
sure ; 
difference between ordinates on a 
C-M’ plot; 
maximum value of I; 
instantaneous regain* ; 
equilibria value of regain corre- 
sponding to the temperature (I-> and 
humidity of the surrounding air; 
value of M’ at x = co; 
valueofM’atx=-co; 
differential heat of sorption of water 
by the fibre; 
heat required to raise 1 cm3 of air- 
fibre mixture through l”C, assuming 
no moisture exchange; 
temperature; 
time; 
velocity of wave propagation; Possible reasons for this have been given by 

Cassie and Baxter [Z], who pointed out that 

Pa, 
W, 

fibre mixture; 
density of air; 
rate constant of water sorption by a 
fibre. 

INTRODUCTION 

WHEN a change is made in the temperature or 
moisture content of air flowing through a mass 
of hygroscopic fibres, changes in the tempera- 
ture and moisture content of the mass are 
propagated through it. Cassie and Baxter have 
investigated the process [I, 21, and Cassie has 
developed a theory for the propagation of the 
changes. The theory predicts that the propa- 
gation takes place by two “fronts”, fast and 
slow, moving at constant velocities through the 
mass; the fronts are sharp, the fast front being 
characterized by a change in temperature and 
the slow by a change in moisture content of the 
fibres. 

Experiment [2] shows that the fronts, and in 
particular the slow front, are not usually sharp. - ___ _ _. 

--- ~~ 
* Regain is the moisture content of a fibre expressed non-un~for~ty of air flow would cause a 

as a fraction of its dry weight. “broadening” of the front, and by Daniels [3], 

689 
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who examined the effect of diffusion of tem- 
perature and water-vapour at the front, and 
concluded that it could account for the broaden- 
ing to the extent observed experimentally by 
Cassie and Baxter. 

The authors have recently carried out experi- 
ments on the flow of air through beds of wool 
fibres, observing the passage of the fronts by 
measurement of the associated temperature 
changes with thermocouples inserted at suitable 
points in the bed. The air velocity used was 
50-100 cm/s, i.e. much greater than the value of 
I.4 cm/s used by Cassie and Baxter [2]. (The 
higher speeds are comparable with those used 
in industrial drying processes.) The slow front* 
was found to be very broad (see Fig. 1: curve A). 
Since care was taken to make the bed very 
uniform in density of packing by the use of short 
fibres, it appeared unlikely that non-uniform 
air flow could account for the broadening. Also, 
calculations based on Daniels’ theory of the 
effect of diffusion showed that the observed 
broad fronts were not explicable on this basis, 
the effect of diffusion being usually negligible at 
the relatively high air velocities used. Curve B 
in Fig. 1 shows the profile of the front allowing 
for diffusion, calculated for the conditions of the 
experiment; it is seen to be very much sharper 
than the experimental curve. 

From the consideration of alternative ex- 
planations for the broadness of the fronts it 
appeared that the assumption made by Cassie, 
that the fibres come instantaneously into 
equilibrium temperature and moisture content 
with the air around them, may not always be 
justified, particularly at higher values of air 
flow. Support for this idea comes from recent 
lneasurements [4, 51 of the rate of approach of 
the moisture content of single wool fibres to 
-. ___~_... .-. ._ 

* The form of the fronts propagated depends on the 
temperature and humidity changes which are imposed. 
If the temperature is changed at constant vapour- 
pressure, the temperature changes associated with the 
fast and slow fronts are in the same direction; this was 
the case in the experiments of Cassie er al. [l-3]. In the 
present experiments, the fronts were established by 
alteration of the proportions of different air streams, 
the effect of which was to change both the temperature 
and the vapour-pressure of the air entering the wool 
mass. Under these conditions the fast front is represented 
by a fall of temperature, and the slow front by a sub- 
sequent rise. 

Time, s 

FIG. 1. Experimental determination of temperature front 
at a point 6.5 cm from the upstream face of a uniform 
bed of wool. Curve B is a calculated front taking into 
account the effect of diffusion according to Daniel’s 

theory [3]. 

equilibrium with the air around them. Under 
some conditions, the time to reach equilibrium 
is not negligibly small in comparison with the 
time of passage of the front past a point, as 
assumed by existing theories. 

The mathematical treatment given below 
may be applied to systems other than beds of 
textile fibres, provided that the same basic 
conditions apply : (a) mass, transfer takes place 
from the air stream to the material and (b) this 
transfer is not instantaneous. 

This paper presents an analysis of the effect 
which a finite rate of approach to moisture 
equilibrium between a fibre and its surroundings 
has on the mode of propagation of changes 
through the mass of fibres. The assumption that 
a fibre is always in temperature equilibrium with 
the surrounding air appears justifiable in most 
practical cases and will be adopted here. 

MATHEMATICAL ANALYSIS 

The finite rate qf approach to moisture equilibrium 
To take account of the finite rate of approach 

to moisture equilibrium between a fibre and its 
surrounding air we assume the relationship 
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where M 
M’ 

w 

aM 
-- = w(M’ - M) at (1) 

is the instantaneous regain, 
is the equilibrium value of regain 
corresponding to the temperature, T, 
and humidity of the surrounding air, 
and 
is a rate constant. 

The exponential relation (1) is only an 
approximation to the observed behaviour. For 
example, in wool fibres when small changes in 
M’ are involved, the sorption process is known 
to be two-stage in character [4, 51, the first stage 
occupying times of the order of a minute and 
the second stage typically some hours. How- 
ever, in practice, the second-stage contribution 
can frequently be neglected and the observed 
behaviour sufficiently described by the relation 
(1). As a guide to the magnitude of w, its value 
for Merino wool at room temperature ranges 
between 0.1 s-l (at high regains) and 0.0013 s-l 
(at low regains). 

(2) 

Solution of the equation of moisture balance 

Following Cassie [l] we write the equation of 
moisture balance between air and fibres as 

ac 
t+Vg+P~=o 

Assumption of wave solution 

Owing to the form of equation (4) and the fact 
that the relationship between M’ and C and T is 
empirical (the sorption isotherm), general ana- 
lytical solution presents serious difficulties. We 
therefore attempt to find if a solution exists in 
the form of one or more fronts propagated with 
constant velocity through the mass, in the 
manner found in Cassie’s analysis. We shall 
show later that if a wave solution is accepted 
for equation (4), then C and T are connected 
by a single-valued relation. This means that T 
can be expressed in terms of C, and hence M’ is 
a function of C alone, and we may write 

6C ac 
so that 

al= - u ax’ etc*p 

aM’ ac dM’ __ = -_ . __. 
at at dC (5) 

Substituting (5) in (4) we get 

;f(~+u~)+~ 

ac 
d”’ . ac = 0. +v,,+PAr z (6) 

The assumption of a wave solution may be put 
into the form 

c = C(x - ut) (7) 

where C is the concentration of water-vapour in and u is the velocity of propagation. 
the air, Substituting (7) in (6) we get 

v is the air velocity, and 
p is the mass per unit volume of dry air- 

fibre mixture. 

Substituting (1) in (2) gives 

a2c 

( 

w dM’ 
p+ 

w ac 
v-u dC 
-----u &=o. 

> 
(8) 

Equation (8) is simplified somewhat by finding 
a relation between the air velocity v and the 
front velocity u, as follows: we assume the mass 
of fibres to be of infinite thickness. Let C,, 
Mi be values of C, M’ respectively at x = co, 
and C, and M;P be corresponding values at 
x = ---co. The exchange of moisture takes 
place at a front moving in the x-direction with 
velocity u. The velocity of the air relative to the 
front is (U - u). The change in concentration 
across the front is (C, - Cl). The amount of 
water picked up by the air per second in unit 
cross section of the mass normal to the x-axis 
may then be expressed as 

Eliminating M between (2) and (3) gives 

;O(T++ 

ac ac aM’ 
+~+v~+Pat=o- (4) 

The quantity M’ is a function of C and the 
temperature T. 

2G 
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(0 - UXG - ca> 
and also as pu(ML - Mi). 

By equating (9) and (10) we find 

and substituting (11) in (8) we get 

(12) 
Now 

which, from (12) 

so that 

ac 
-= _,e& 

i 

M’ - Mfj 

ax 
j&p_- zk__” 

a B 1 
+ const. (14) 

The arbitrary constant is evaluated by intro- 
duction of the boundary condition that, [at 
x=-co],X/ax=O,C=C,andM’=M;. 

ac pw _ r= - _.~ _ 
ax V-U 

x E-2 C-C,)-(M’- 
a P( 

Relationship between concentration and tempera- 
ture 

If wave solutions to (4) exist, that is if a change 
in concentration can be propagated through the 
mass in accordance with equation (7), then the 
shape of the front is given by (15). However, 
the relationship between M’ and C cannot in 
general be expressed analytically, and is deter- 
mined by experiment. The solution of (15) is 
therefore best carried through numerically. 
Before proceeding with this solution one must 
recall that in the derivation of equation (5) it was 

stated that C and the temperature Tare uniquely 
related. It is now necessary to show this and to 
find the relation. 

Following Cassie, we write the equation of 
heat balance between air and fibres as 

aT aT aM 
sat + pn c,, U g; - 4P -$r = O (16) 

where 5’ = heat required to raise 1 cm3 of the 
air-fibre mixture through 1 degC, 
ass~ing no moisture exchange; 

pn = density of air; 
c, = specific heat of air at constant pres- 

sure ; and 
q = differential heat of sorption of water 

by the fibre. 

Eliminating aM/& between (16) and the 
equation of moisture balance (2), we find 

faking the previous assumption (7) that a 
change in concentration is propagated with 
uniform velocity U, and the further assumption 
that the temperature change caused by the mass 
transfer is propagated with the same velocity, 
i.e. that 

T = 7-(x - ut), 

equation (17) becomes 

(18) 

(20) 

Equation (20) gives us the required relation- 
ship between C and T. However, it is not a 
particularly convenient form, involving both 
v and U. It may be simplified either by making 
the assumption 

PO (‘0 _. 
s 

Nl 

or the assumptions 

U@U 

(21) 

(22) 
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(23) 

In either case, (20) then becomes 

C + ‘?i? T = const. (24) 

The assumption (21) was made by Cassie [l] 
in order to simplify the interpretation of his 
ma~ematical solution, but under usual con- 
ditions is hardly justifiable. In practice (22) is 
easily satisfied and (23) is usually justifiable for 
the slow second front. Equation (24) is inter- 
esting in being closely related to August’s wet- 
bulb hypothesis [6]. It is consistent with the 
idea that the heat required to evaporate water 
from the fibre is derived from the volume of 
air into which it evaporates. 

With assumption (22), equation (15) may be 
written 

ac pw 
ax=u 

x 1 ;q(c - C@) - (M’ - 34;)) (25) 
a 

and, by means of (24) in conjunction with 
experimentally determined isotherms, the re- 
lationship between M’ and C necessary for the 
solution of (25) may be evaluated. 

Graphical representation of the wave solution 
The right-hand side of (25) is readily repre- 

sented on a C - M’ plot; see Fig. 2. The first 
term within the outer brackets is the ordinate 
(less M$ of the straight line through the points 
(C,, ML), CPM;), while the second term is the 
ordinate (again less Mb) of the C-M’ curve 
through the same points. Thus we may write 

ac PWl _- 
ax- v (261 

= A(C), (27) 

say, where I is the difference between the two 
ordinates at any given value of C. 

From this representation it can be seen that I 
and therefore K/&X must always be positive if 

t 
0.10 I I I I I 

8 9 IO II 

Water vapour cgncentration C, (g I m3) 

FIG. 2. C-M’ plot for wool fibres representing the terms 
(M’, - MB) (c - C&‘(C, - C6) and (Ivf’ - M’$ of 
equation (25), and showing graphical determination of 

lmax for particular boundary conditions. 

the C-M’ curve is concave upward. If it is 
remembered that a sorption front implies a nega- 
tive value of X/ax, while a desorption front 
implies a positive value, it can be seen that if 
the C-M’ curve is concave upward a stable wave 
solution exists for only the desorption case. 
A sorption change is not propagated as a stable 
wave of constant velocity. 

Conversely, if the C-M’ curve is concave 
downward, X/ax is negative, and a stable 
wave solution exists only for a sorption change. 
The C-M’ curve in the case of textile fibres has 
this form only at very low values of regain. 
Equation (26) may be solved, by numerical 
methods, to give C. In general, experiments 
show the existence of fast and slow waves, such 
as were found in Cassie’s analysis. However, the 
assumptions (22) and (23) which have been 
made in deriving (26) will usually be justified 
only for the slow wave, and the solution is 
therefore confined to this wave, in which nearly 
all the moisture transfer occurs. 

C having been determined, M may be found 
from (3), remembering that X/at = --u X/&x. 
T may be found from (24). 
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Approximate analytical solution 

An analytical solution of (26) may be made 
for the case where the change in concentration 
is not large. 

Let C = C, when I = lmax (see Fig. 2), and 
assume that 1 may be adequately represented 
between C, and C, by a parabolic function of C. 
Then from (26) and (27) we may write 

2 = A(C,) (1 - ($$$]’ (28) 
Combining this equation with the assumption 

that C = C(x - ut) (equation 7), we obtain 

c - co &Co) 
c, - ---- = tanh c,-c, (X - ut), x 3 ut co 

(29) 

if we choose that x - ut = 0 when C = C,. By 
assuming a second parabolic function for I 
between Cb and C,, we find 

c - co 4Co) ~~ = tanh C ---_C (x - ut), x .< ut. 
q9- co B 0 

(30) 

Hence in the case where the C - M’ curve can 
be adequately represented between C, and C8 by 
a quadratic form, a profile of the front at any 
time, C(X, 0) say, is in the form of two tanh 
functions (29) and (30), joining with a common 
maximum slope A(C,) at C = Co which is 
therefore an inflexion point. 

The width of the front 

To obtain an estimate of the width of the 
front, we note that tanh 1 = 0.762, and examine 
the front at fixed time t = 0. 

When x = (C, - C,)/A(C,) and t = 0, 
(C - C,)/(C, - Co) = 0.762 and similarly in 
the interval Co to CP. Hence an interval of 
(C, - C,M(Co) in x contains 76 per cent of 
the total change in C and is a good measure 
of the width of the front. 

Remembering that I = ImaX at C = Co, we 
have from (26) and (27) that 

4c, - c/?> width of front = ~~~~~ 
P&X%X 

. (31) 

Time for front to pass any point 

When examined as a function of time at a fixed 
point (x = 0), the front becomes, from (29) 

c- co --u A(C,)t 

C, - Co 
~~~ =tanh-C,_ Co, for t < 0. 

With relations (27) and (ll), this can be 
simplified to 

c - co - 4nax 

c, - co = tanh Mz-_-Mi t (32) 

where Mi is such that 

Fa _I M:, = _CKZ 5 
M,: - Mb c, - c; 

In Fig. 2, Mi is the regain at the point R on 
chord PQ which has the abscissa Co. A similar 
relation to (32) holds for t > 0. 

Equation (32) shows that the behaviour at a 
fixed point is independent of the air velocity U, 
and of the packing density given by p. The 
interpretation of this is that with increasing air 
velocity or decreasing density the front velocity 
increases, but the front width increases pro- 
portionately. 

The time for the front to pass a point may be 
estimated in the same way as the width. This 
measure is 

M; - M; 

4nBX (33) 

Numerical evaluation of a particular case 

Experimental data can most conveniently be 
obtained by measuring temperature at a fixed 
position in the bed. Owing to the linear relation 
between water-vapour concentration and tem- 
perature (20), the fractional temperature change 
should be always the same as the fractional 
change in C. 

We now evaluate equation (33) for the time 
required for the slow front to pass a given point, 
inserting values corresponding to the conditions 
of one of the experiments mentioned in the first 
part of this paper. 

The initial and final values of concentration for 
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Time, s 

FIG. 3. A front (temperature vs. time at a fixed point) formed by two tanh functions, superimposed 
on experimentally obtained slow front. The zero of the time scale is arbitrary for the two curves, 

which have been made to coincide at the mid-point of the calculated front. 
0 = experimental curve 

-.-•- zzz calculated curve 

the second front were : 

c, = 10 g/m” 

CB = S-6 g/m”. 

From Fig. 2, in which a curve of M’ vs. C is 
given for wool under the conditions of the ex- 
periment, corresponding values of M’ can be 
determined as follows : 

fl4; = o-133 

M;I = 0.183. 

By the graphical construction described in 
the section “Graphical representation of the 
wave solution”, we find (Fig. 2) a value 

I max = O-004. 

For completeness, it may be mentioned that 
the air velocity u was 75 cm/s and the density p 
was O-1 1 g/cm3. 

From data on the rate of sorption of water 
by wool fibres [4, 51 we assign for the conditions 
of the experiment a value : 

w = 0.05 s-1. 

The time for the front to pass a point is then 

estimated from (33) to be 230 s. This time is 
much greater than is predicted when the finite 
rate of sorption of the fibres is neglected, and 
agrees much more closely with the experimental 
results of Fig. 1. This may be seen from Fig. 3, 
in which the experimental curve is plotted 
together with the theoretical curve (equation 32) 
evaluated for the above conditions. It should be 
understood, however, that this comparison is 
merely illustrative, since the experimental results 
are obtained from a finite bed, in which transient 
effects, beyond the scope of this paper, can be 
expected. 

CONCLUSION 

The analysis shows that, when account is 
taken of the finite rate of approach to moisture 
equilibrium between air and fibres, a constant- 
velocity-wave solution for the propagation of 
changes through the mass exists under certain 
conditions, which are satisfied in the cases of 
most textile fibres only when a desorption step is 
propagated. A general solution for the profile 
of the propagated front may be found by 
numerical methods. Provided the concentration 
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change is not great, an analytical expression for 
the width of front may be obtained, and this, 
when evaluated for typical conditions, is found 

3. 

to be much greater than would be predicted 
when the finite rate of fibre sorption is neglected. 
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RbmnLCet article presente une solution pour la propagation des variations de temperature et 
d’humidite dans une masse de fibres, quand on fait varier les conditions d’ecoulement de l’air dans la 
masse. La theorie tient compte de la vitesse finie d’absorption ou de d&sorption des fibres; dans les 
etudes prtidentes cette vitesse avait ete supposee infinie. Les calculs, bases sur la theorie actuelle 
et supposant des vitesses d’ecoulement &gales a celle que l’on utilise en pratique dans l’industrie, 
montrent que le profil d’humidite dans la masse doit &tre beaucoup plus grand que celui que pre- 
voyait les theories precedentes. Les profils de dtsorption des fibres don& par l’experience sont en bon 

accord avec la theorie present& 

Znsammenfassung-Es wird eine Losung angegeben ftir die Ausbreitung von Temperatur- und 
Feuchtigkeitslnderungen durch einen Faserstoff, wenn der Zustand der durch den Faserstoff hin- 
durchstriimenden Luft gelndert wird. Die Theorie stellt die endliche Geschwindigkeit der Feuchtig- 
keitsaufnahme oder -Abgabe durch die Fasern in Rechnung; in frtiheren Arbeiten war diese Geschwin- 
digkeit als unendlich gross angenommen worden. Berechnungen nach der hier vorleigenden Theorie 
und mit ftir die industrielle Praxis kehnzeichnenden Luftgeschwindigkeiten zeigen, dass das Feuchtig- 
keitsprofil im Faserstoff weit ausgedehnt sein wird im Vergleich zu Aussagen nach ftiheren Theorien 
(die Feuchtigkeitsanderungen erstrecken sich iiber einen grosseren Zeitraum). Durch Versuch 
ermittelte Profile ftir die Desorption der Fasern stimmen mit der vorliegenden Theorie gut tiberein. 

AEEOT~II~JI-B CTaTbe II~HBOAHTCH aHaJIHTHHecKOe penIeHHe AJIII HaxoIKAeHHrI nOHe& 
TeMHepaTyp II BJIamHOCTM B CJIOe BOJIOKOH IIIepCTH IIpH pa3JIMBHOtt CKOpOCTH HpOTeKaHMH 
BOanyXa Yepe3 CJIOt. B OTJIHBHe OT paHee IIpHHHMaBmetiCH MeTOAHKB aBTOphI YHHTbIBaIoT, 
9TO COCTOHHHe paBHOBeCHR MeIKAy BJIamHhIM MaTepHaHOM H BOBAyXOM HaCTynaeT He MrHOBeH- 
HO, a C OHpeAeJIeHHOH KOHeBHOi% CKOpOCTbIO. Pe3yJIbTaTbI ‘IHCJIeHHbIX paC4eTOB nOKa3aJIM, 
HTO npo@iJII4 Bnaroco~epHtaHat% no TOJImHHe CJIOR, IIOJIy=IeHHbIe HCXOAH 113 yKa3aHHbIX 

IIpeAnOChIHOK, 3HaHMTeJIbHO OTJIIVIaIOTCFI OT TeX, ItOTOpbIe BbITeKaIOT 113 IIpe~HHX TeOpHn. 


